Potential problems on surfaces: With or without boundary, subjected to discrete distributed sources
نویسندگان
چکیده
منابع مشابه
Discrete Topology-Revealing Vector Fields on Simplicial Surfaces with Boundary
We present a discrete Hodge-Morrey-Friedrichs decomposition for piecewise constant vector fields on simplicial surfaces with boundary which is structurally consistent with the smooth theory. In particular, it preserves a deep linkage between metric properties of the spaces of harmonic Dirichlet and Neumann fields and the topology of the underlying geometry, which reveals itself as a discrete de...
متن کاملDiscrete Boundary-value Problems
We consider multivariate sequences, deened by a partial linear recurrence equation together with appropriate boundary conditions. The domain of deenition of these sequences is the rst orthant of the integer lattice, restricted in some dimensions to an initial segment of the nonnegative integers. By means of the kernel method we obtain an explicit expression for the generating function of the so...
متن کاملWavelet Approximations on Closed Surfaces and Their Application to Boundary-value Problems of Potential Theory
Wavelets on closed surfaces in Euclidean space R 3 are introduced starting from a scale discrete wavelet transform for potentials harmonic down to a spherical boundary. Essential tools for approximation are integration formulas relating an integral over the sphere to suitable linear combinations of function values (resp. normal derivatives) on the closed surface under consideration. A scale dis...
متن کاملOn First-Order Discrete Boundary Value Problems
This article analyzes a nonlinear system of first-order difference equations with periodic and non-periodic boundary conditions. Some sufficient conditions are presented under which: potential solutions to the equations will satisfy certain a priori bounds; and the equations will admit at least one solution. The methods involve new dynamic inequalities and use of Brouwer degree theory. The new ...
متن کاملBoundary element methods for potential problems with nonlinear boundary conditions
Galerkin boundary element methods for the solution of novel first kind Steklov–Poincaré and hypersingular operator boundary integral equations with nonlinear perturbations are investigated to solve potential type problems in twoand three-dimensional Lipschitz domains with nonlinear boundary conditions. For the numerical solution of the resulting Newton iterate linear boundary integral equations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Results in Physics
سال: 2019
ISSN: 2211-3797
DOI: 10.1016/j.rinp.2019.01.013